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Abstract

There is a prominent trend to augment and improve the formality
of biomedical ontologies. For example, this is shown by the current ef-
fort on adding description logic axioms, such as disjointness. One of the
key ontology applications that can take advantage of this effort is the
conceptual (functional) similarity measurement. The presence of descrip-
tion logic axioms in biomedical ontologies make the current structural or
extensional approaches weaker and further away from providing sound
semantics-based similarity measures. Although beneficial in small on-
tologies, the exploration of description logic axioms by semantics-based
similarity measures is computational expensive. This limitation is critical
for biomedical ontologies that normally contain thousands of concepts.
Thus in the process of gaining their rightful place, biomedical functional
similarity measures have to take the journey of finding how this rich and
powerful knowledge can be fully explored while keeping feasible computa-
tional costs. This manuscript aims at promoting and guiding the develop-
ment of compelling tools that deliver what the biomedical community will
require in a near future: a next-generation of biomedical similarity mea-
sures that efficiently and fully explore the semantics present in biomedical
ontologies.
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Why Functional Similarity?

We have a natural tendency to compare biomedical entities based on their
“looks”, i.e. based on the digital representation of their primary structure. For
example, sequence similarity measurement, like BLAST [1], is a common step
to almost all molecular biology studies that compare genes and proteins. This
happens because sequences can be treated efficiently by computational methods
and because sequences are accurate and common digital representations of the
primary structure of genes and proteins. Sequence similarity requires only the
information on the primary structure (the sequence itself), but limits the anal-
ysis to proteins that share a similar sequence, independently of their biological
role. The function of a protein derives from its structure, but not always a
high structural similarity corresponds to a high functional similarity and vice
versa [22, 31]. For example, the Human protein hIL-10 and the Epstein-Barr
virus protein vIL-10 share a high structural similarity, but they have a clear
distinct physiological profile [56].

Divergence of function with sequence conservation is an exception rather
than a rule, so in general sequence similarity remains as a reliable technique
to determine the functional similarity of proteins. However, this gap between
structural and functional similarity creates an opportunity to develop similarity
measures that can juxtapose, combine and/or complement structural similar-
ity measures with a degree of shared functional characteristics. For example,
when searching for proteins with an oxidoreductase activity, we may also be
interested in proteins with similar activities, such as monooxygenase activity,
independently of their structural similarity. This analysis of similar activities
has become computationally possible due to the prevailing usage of ontologies
to functionally characterize biomedical entities.

Ontologies and Similarity Measures

Ontologies can be loosely defined as “a vocabulary of terms and some specifica-
tion of their meaning” [27,52].
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Figure 1: The Ontology Spectrum from the ontology panel at AAAI’99 [30].
The panelists: Lehman, McGuinness, Ushold, and Welty.

Figure 1 shows a well-known classification attempt to describe how ontolo-
gies cover a wide spectrum [30,50], going from their most basic form of a catalog
ID, Glossary, Thesauri; to one where concepts are formally expressed and struc-
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tured through logically defined is-a relations; to one where formal instances are
explicitly connected to their defining concepts; and finally to one where general
logical constraints are used to express the definition of those concepts in a for-
mally defined logic. Going up in the formality&complexity scale, ontologies get
more accurate and expressive.

Recently, conceptual similarity was defined as a function that, given two
ontology terms or two sets of terms annotating two entities, returns a numeri-
cal value reflecting the closeness in meaning between them [38]. The formal-
ity&complexity of the ontology defines the type of function and meaning that
a conceptual similarity measure can implement. Thus, most of the approaches
can be classified into the following categories [18]:

Terminological approaches focus on the names of the classes. For exam-
ple, the term Cats is a morphological derivation of Cat, and thus classes
bearing such names are likely equivalent. These approaches can be com-
plemented with thesauri and dictionaries, to explore lexical relations such
as synonymy.

Structural approaches explore the structure of the classes, i.e. their relations
to other classes. The sub-class and super-class relations provide a taxo-
nomic backbone that can be explored using graph matching techniques.
Ontology-specific relations, along with their properties (or facets), such as
domain, range and cardinality, can also be explored.

Extensional approaches can only be applied when there is a large set of in-
stances. The intuition behind these approaches is that the more instances
two classes share, the more likely they have a high similarity. In case there
are no shared instances between ontologies, distance metrics between in-
dividuals can be computed.

Semantics-based approaches are sensitive to the semantics of the logical
formalism in which the ontologies are formalized, and are thus enabled to
resort to inference techniques. The goal of this type of measures is to fully
explore the available description logic axioms.

Note that ontology similarity, or global similarity [18], is the task of assessing the
similarity of ontologies as wholes. This is usually done by flooding or aggregating
conceptual similarity values.

Going up in the formality&complexity scale has consequences. Although
there are many terminological, structural and/or extensional measures (includ-
ing hybrid ones), there are only a few semantics-based similarity measures [3,
20, 24]. The lack of semantics-based similarity measures can be explained by
the following factors:

Computational complexity: semantics-based measures usually require some
sort of deduction, which usually requires exponential time, even in less
expressive formalisms.
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Incomplete knowledge: classes in an ontology do not need to be, and indeed
rarely are, completely defined.

The incomplete knowledge problem can only be effectively addressed if we
improve the quality of the process of ontology development. For example, the
omission of simple and obvious relationships in the January 2003 release of
SNOMED-CT R©, did not allow the inference of “uterus” as part-of “female
genital tract”, nor the inference that “uterus” as a role in “pregnancy” [9].
However, design patterns and best practices in ontology specification are gaining
popularity, which may contribute to minimize the impact of this problem. For
example, the OBO (Open Biomedical Ontology) foundry has been successfully
promoting the correct application of a set of principles to the task of ontology
development to support biomedical data integration [48].

The computational complexity problem is due to the large size of biomed-
ical ontologies. They usually contain thousands of concepts that are used to
annotate an even larger set of entities. For example, studies show that con-
sistency checking using description logics is EXPTIME-Complete [17, 44] Note
that, EXPTIME-Complete are thought to be the hardest problems in EXP-
TIME, which is the set of all decision problems solvable by a deterministic
Turing machine in O(2p(n)) time, where p(n) is a polynomial function of n.
Most biomedical high-throughput studies analyze large numbers of entities si-
multaneously involving computationally intensive similarity calculations. Thus,
the computational cost of current semantics-based similarity measures poses a
major bottleneck to their use in biomedical ontologies.

Biomedical Ontologies

Etymologiae was one of the first attempts to systematize medicine knowledge [33,
Book IV: Medicine], however only in the last decades the biomedical community
engaged on a tremendous and noble effort of developing and using ontologies.
These ontologies normally serve as controlled vocabularies to annotate the vast
amount of biomedical entities being discovered with their functional charac-
teristics [43]. For example, SNOMED-CT R© (Systematized Nomenclature Of
Medicine-Clinical Terms) is considered to be the most comprehensive collection
of medical terms, which is used as a standard terminology to represent clinically
relevant information and enable the ontological annotation of electronic health
records. In 2012, SNOMED-CT R© included more than 300,000 unique concepts.
Another example is GO (Gene Ontology), an extensively used ontology to an-
notate proteins with concepts describing their molecular function, biological
process and cellular component [4]. These ontological annotations enabled the
interoperability and automatization of these semantic characterizations through
different communities. GO is part of OBO and in 2012 it included more than
38,000 unique concepts fully defined. Another ontology part of OBO is ChEBI
(Chemical Entities of Biological Interest), a prominent ontology of molecular
entities focused on small chemical compounds [16]. In 2013, ChEBI included
more than 32,000 fully annotated entities.
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As the number of people developing and using ontologies continues to grow,
their size will rise too. However, to maintain the quality of ontologies we have
now to pay special attention to important features of ontology languages that
were neglected in their initial specification, such as the lack of description log-
ical axioms in GO [54] and SNOMED-CT R© [9]. Design patterns and best
practices in ontology specification are being disseminated and their applica-
tion stimulated [7, 49]. Description logical axioms, such as disjointness, have
been recently included in these large and popular biomedical ontologies, for
example in GO [10] and ChEBI [21]. Roadmaps for overall improvement of
SNOMED-CT R© by addressing both logical and ontological issues are also be-
ing considered [40,46]. Although the primary purpose of adding these axioms is
to automatically identify inconsistencies and misannotations in the ontologies,
they can also have an important role for enhancing the way conceptual similar-
ity is calculated [13]. Therefore, the inclusion of the description logical axioms
being added to biomedical ontologies in similarity measures is much required.

Current Biomedical Functional Similarity

A successful application of terminological approaches to biomedical ontologies
has been to find the most similar ontological concepts to the terms recognized
in biomedical literature by text mining methods. For example, in BioCreAtIvE
2004 [23] a measure based on the textual descriptors of GO concepts was used to
resolve references to GO in biomedical literature [12]. One of the first structural
approaches successfully applied to a biomedical ontology was a path distance
measure that demonstrated the advantages of using the hierarchical relations
of the Medical Subject Headings (MeSH) [39]. More recently, structural ap-
proaches based on graph-based algorithms have been proposed [35].

In Molecular Biology, as in other biomedical areas, mainstream methods
for functional characterization of genes and proteins are based on ontological
annotation, for example using GO. This enabled the successful development and
application of conceptual similarity measures based on extensional approaches.
These measures compare two proteins according to the amount of ontological
information their annotations share. The shared ontological information can be
inferred from the most informative common ancestor of the annotated concepts,
or from all the disjunctive common ancestors [11].

Inspired on Tversky’s contrast model [51] and Jaccard similarity measure [25],
conceptual similarity between proteins has been presented as a good predictor
of functional similarity. The seminal work based on Resnik’s measure [41] iden-
tified a correlation between structural and conceptual similarity [34], just by
defining the information content of each GO concept as inversely proportional
to its number of annotated proteins. Conceptual similarity has become a popular
approach to compare biomedical entities based on their functional characteriza-
tions (annotations). For example, similarity measures have already been proven
to be useful in many biomedical studies, such as: in information retrieval [45], in
discovering novel relationships [2,32,36,53], in clustering entities [55], in clinical
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diagnostics [29], and in classification problems [19].
Nowadays, many conceptual similarity measures use structural or exten-

sional approaches and are usually designated as semantic similarity measures [37,
38]. However, these approaches do not include the description logic axioms that
ontologists are starting to provide. In the remainder of this manuscript, we will
explain the limitations of these structural or extensional approaches and how
semantics-based similarity measures may overcome this problem.

Meaning and Function

As presented previously, conceptual similarity measures can be defined in terms
of the notions of meaning and function. We assume meaning to be the role
or activity that biomedical entities have in living systems, which is denoted
by their ontological annotations as opposed to their primary structure. For
example, the meaning of a protein can be unambiguously described by GO
annotations in terms of its (1) molecular function; (2) biological process or
(3) cellular component. Even by using ontological annotations to define the
meaning some issues should be taken in account to avoid common pitfalls [42].
For example the following issues may have a significant impact on the calculation
of conceptual similarity:

Negligibility: many biomedical entities do not have ontological annotations
or are too general to be of any value, in opposition to structure that is
almost always available.

Inaccuracy: unsound ontological annotations that are inferred directly from
automated methods, for example by improper application of structural
similarity to propagate annotations.

Subjectivity: different communities have different perspectives of the meaning
of a biomedical entity. For example, the activity of a protein may vary
according to different species.

These issues will be mitigated as the community that collaborates in the an-
notations refinement continues to grow. For example, the quality of computa-
tionally inferred annotations is now very high in some popular ontologies, such
as in GO [47]. This enhancement effort enabled the successful application of
conceptual similarity in many biomedical studies, as described in the previous
section. Additionally, an effective application of the set of good principles and
practices proposed by OBO could also be a way to address some of these issues.

A mathematical definition of a similarity function is available in [6]. Func-
tion is defined as a measure that receives as input two concepts and returns
an element of a totally ordered set (usually [0, 1]), However, not all the concep-
tual similarity measures applied to biomedical ontologies satisfy the properties of
positiveness (sim(x, y) ≥ 0), reflexibility (sim(x, x) = 1∧sim(x, x) ≥ sim(x, y))
and symmetry (sim(x, y) = sim(y, x)). For example, the seminal Resnik’s mea-
sure does not satisfy the reflexibility property, since it returns the information
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of the concept (sim(x, x) = IC(x)) and not 1 [34, 41]. Moreover, conceptual
similarity measures usually do not include disjoint axioms that may contain rel-
evant information for the similarity calculation. For example, if two classes are
disjoint, i.e. an individual cannot simultaneously be an instance of both classes,
then this may suggest a lower similarity between these disjoint classes.

According to D’Amato et al. [14] the measures in both approaches (Struc-
tural or Extensional) fail to consider (equivalence) soundness and disjointness
incompatibility:

Equivalence Soundness: if x ≡ y ⇒ sim(x, z) = sim(y, z)

Disjointness Incompatibility: if x and y are disjoint ; sim(x, y) = 0

In biomedical ontologies equivalence and disjoint specifications were in most
cases non-existent, so both notions were implicitly considered to be true for
all conceptual similarity measures applied to biomedical ontologies. However,
this is quickly changing since the community is now realizing the power of
using formal conceptualizations to automatically check logical consistency and
to enhance the reasoning capabilities [5,28]. Thus, developing proper conceptual
similarity measures that fully explore the domain semantics formally expressed
in the ontology will not only improve their effectiveness but also further motivate
the ongoing process of adding description logic axioms to biomedical ontologies.

A fictitious example can be used to elucidate the usefulness of description
logic axioms for calculating biomedical functional similarity. Let us assume that
we have three drugs α, β and γ, each including in their composition a metal.
Assuming that we know a priori that the metal of α is ferrous, of β is noble
and of γ is precious, and assuming that the class ferrous metals is disjoint from
the overlapping classes noble and precious metals, then we can infer that α
cannot be composed by the same metal as β and γ, unlike β and γ that can
be composed by the same material, e.g. gold. Thus, when comparing the drugs
α, β and γ the disjointness would give us a useful insight into the similarity
calculation.

Similarity using Description Logics

The current trend of improving the formality of biomedical ontologies will boost
the availability and quality of their description logic axioms. Thus, conceptual
similarity measures have to be prepared to include this rich knowledge that will
improve their effectiveness. The advantages of developing well-defined concep-
tual similarity measures based on description logic axioms have already been
demonstrated [8, 14, 26]. However, the exploration of description logic axioms
by semantics-based similarity measures is computational expensive, i.e. their
direct application to the large biomedical ontologies is now cumbersome. Thus,
novel semantics-based similarity measures less computationally demanding are
much required.

The theoretical foundations of semantics-based similarity may serve as the
basis for developing novel measures. D’Amato et al. developed an efficient
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method for resource retrieval that explores description logics to cluster the re-
sources according to their conceptual similarity [15]. Another approach is de-
veloping add-ons for existing conceptual similarity measures in order to satisfy
the equivalence soundness and the disjointness incompatibility properties. For
example, add-ons for conceptual similarity measures were already successfully
applied in finding common disjunctive ancestors [11].

One could argue that the description logic axioms present today in biomed-
ical ontologies are still too scarce, vague and insignificant to represent a valid
semantic source to enhance similarity results. However, this manuscript presents
the benefits that would result from using these axioms for calculating functional
similarity, even if they do not represent yet a perfect and comprehensive set.
And as more and more description logic axioms become available the benefits
will increase dramatically, making the usage of this powerful knowledge impera-
tive. Thus, time is ripe to propose and develop the next-generation of similarity
measures that take advantage of the valuable effort of ontology and description
logics specialists that are currently working on the enhancement of the formal
and logical aspects of biomedical ontologies.
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